Publications

Por Max L.N. Gonçalves

Prepints  

 

  1. Bello-Cruz, Y., Gonçalves, M.L.N.,   Melo, J. G.,  Mohr, C..   A Relative Inexact Proximal Gradient Method With an Explicit Linesearch. [code]
  2. Gonçalves, D. S., Gonçalves, M. L. N.; Melo, J.G.  Improved convergence rates for the multiobjective Frank-Wolfe method. 

Articles in Academic Journals  (Scholar Google Citations click here)

 

  1. Gonçalves, M. L. N. Subsampled cubic regularization method for finite-sum minimization.  Optimization, 2024 (pdf)
  2. Gonçalves, M. L. N.; Menezes, T.C. A framework for convex-constrained monotone nonlinear equations and its special cases. Computational and Applied Mathematics, 2024   (pdf)  [code]
  3. Gonçalves, D. S., Gonçalves, M. L. N.; Melo, J.G.. An away-step Frank-Wolfe algorithm for constrained multiobjective optimization. Computational Optimization and Applications, 88, 759-781, 2024.
  4. Adona, V.A.; Gonçalves, M. L. N. An inexact version of the symmetric proximal ADMM for solving separable convex optimization.  Numerical Algorithms, 94, 1--28, 2023. (pdf)
  5. Bello-Cruz, Y., Gonçalves, M. L. N., Krislock, N.. On FISTA with a relative error condition.  Computational Optimization and Applications, 84, 295-318, 2023. (pdf)  [code]
  6. Gonçalves, M. L. N., Lima, F.S., Prudente, L.F.  A study of Liu-Storey conjugate gradient methods for vector optimization.   Applied Mathematics and Computation, 425, 127099, 2022. (pdf) 
  7. Gonçalves, M. L. N.; Melo, J. G.; Monteiro, R. D. C.. Projection-free accelerated method for convex optimization. Optimization methods and software, 37, 214-240, 2022. (pdf)
  8. Gonçalves, M. L. N., Lima, F.S., Prudente, L.F. Globally convergent Newton-type methods for multiobjective optimization.  Computational Optimization and Applications,83, 403-434, 2022. (pdf.)
  9. Grapiglia, G.N.; Gonçalves, M. L. N.; Silva, G.N. A Cubic Regularization of  Newton's Method with Finite-Difference Hessian Approximations.  Numerical Algorithms, 90, 607–630 (2022)(pdf)
  10. Gonçalves, D. S., Gonçalves, M. L. N.; Menezes, T.C.. Inexact variable metric method for convex-constrained optimization problems.  Optimization, 71(1), 145-163, 2022 (pdf)
  11. Gonçalves, D. S., Gonçalves, M. L. N.; Oliveira, F.R.. An inexact projected LM type algorithm for constrained nonlinear systems.   Journal of Computational and Applied Mathematics, 391, 113-421, 2021  (pdf)
  12. Adona, V.A.; Gonçalves, M. L. N.; Melo, J. G. An  inexact proximal generalized alternating direction method of multipliers. Computational Optimization and Applications, 76(3), 621-647, 2020. (pdf)
  13. Gonçalves, M. L. N.; Prudente, L.F. On the extension of the Hager-Zhang conjugate gradient method for vector optimization.  Computational Optimization and Applications, 76(3), 899-916, 2020. (pdf)
  14. Gonçalves, M. L. N.; Oliveira, F.R. On the global convergent of an inexact quasi-Newton conditional gradient method for constrained nonlinear systems.  Numerical Algorithms, 84(2), 609-631, 2020. (pdf).
  15. Gonçalves, M. L. N.; Menezes, T.C. Gauss-Newton method with approximate projections for solving constrained nonlinear least squares problems.   Journal of Complexity, 58(1), 101459,  2020. (pdf)
  16. Gonçalves, M. L. N.; Melo, J. G.; Monteiro, R. D. C.. On the iteration-complexity of a non-Euclidean hybrid proximal extragradient and a proximal ADMM. Optimization, 69(4), 847-873, 2020. (pdf)
  17. Gonçalves, M. L. N.; Melo, J. G.; Monteiro, R. D. C.. Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems.  Pacific journal of optimization, 15(3), 379-398, 2019. (pdf).
  18. Adona, V.A.; Gonçalves, M. L. N.; Melo, J. G. A Partially Inexact Proximal Alternating Direction Method of Multipliers and Its Iteration-Complexity Analysis.  J. Optim. Theory App., 182(2): 640–666,2019 (pdf).
  19. Adona, V.A.; Gonçalves, M. L. N.; Melo, J. G..  Iteration-complexity of a generalized alternating direction method of multipliers. Journal of Global Optimization, 73(2):331-348, 2019 (pdf).
  20. Gonçalves, M. L. N.; Oliveira, F.R..  An inexact Newton-Like gradient method for constrained nonlinear systems. Applied Numerical Mathematics, Vol 132(1): 22-34, 2018  (pdf)
  21. Gonçalves, M. L. N. On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize.  Applied Mathematics and Computation, Vol 336 (1),  315-325, 2018 (pdf).
  22. Gonçalves, M. L. N.; Marques Alves, M; Melo, J. G.. Pointwise and ergodic convergence rates of a variable metric proximal ADMMJ. Optim. Theory Appl Vol 177, No.1: pp 448-478, 2018. (pdf)
  23. Gonçalves, M. L. N.; Melo, J. G.; Monteiro, R. D. C.. Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework.  SIAM Journal on Optimization, Vol. 27, No. 1 : pp. 379-407, 2017. (pdf)
  24.  Gonçalves, M. L. N.; Melo, J. G. . A Newton conditional gradient method for constrained nonlinear systems. Journal of Computational and Applied Mathematics, 311, p. 473-483, 2016.(pdf)
  25.  Gonçalves, M. L. N. . Inexact Gauss-Newton like methods for injective-overdetermined systems of equations under a majorant condition. Numerical Algorithms, v. 72, p. 377-392, 2016. (pdf)
  26.  Gonçalves, M. L. N.; Melo, J. G. ; Prudente, L. F. . Augmented Lagrangian methods for nonlinear programming with possible infeasibility. Journal of Global Optimization, v. 63, p. 297-318, 2015.(pdf)
  27. Gonçalves, M.L.N.; Oliveira, P.R. . Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition. Optimization , v. 64, p. 1-18, 2015. (pdf)
  28.  Ferreira, O. P. ; Gonçalves, M. L. N. ; Oliveira, P. R. . Convergence of the Gauss--Newton Method for Convex Composite Optimization under a Majorant Condition. SIAM Journal on Optimization, v. 23, p. 1757-1783, 2013. (pdf) 
  29. Gonçalves, M.L.N.. Local convergence of the Gauss-Newton method for injective-overdetermined systems of equations under a majorant condition. Computers & Mathematics with Applications, v. 66, p. 490-499, 2013. (pdf)
  30. Ferreira, O.P. ; Oliveira, P.R. ; Gonçalves, M. L. N. . Local convergence analysis of inexact Gauss-Newton like methods under majorant condition. Journal of Computational and Applied Mathematics, v. 236, p. 2487-2498, 2012. (pdf)
  31.  Ferreira, O.P. ; Gonçalves, M.L.N. ; Oliveira, P.R. . Local convergence analysis of the Gauss-Newton method under a majorant condition. Journal of Complexity (Print), v. 27, p. 111-125, 2011. (pdf)
  32.  Ferreira, O. P. ; Gonçalves, M. L. N. . Local convergence analysis of inexact Newton-like methods under majorant condition. Computational Optimization and Applications, v. 48, p. 1-21, 2011. (pdf)

 

Ph. D. Thesis

  1. Gonçalves, M. L. N.. Análise de convergência dos métodos de Gauss-Newton do ponto de vista do princípio majorante, 2011. Thesis-Universidade Federal do Rio de Janeiro. Advisor: Paulo R. Oliveira e Orizon P. Ferreira.


Master Dissertation

  1. Gonçalves, M. L. N.. Convergência local do método de Newton inexato e suas variações do ponto de vista do princípio majorante de Kantorovich, 2007. Dissertation-Universidade Federal de Goiás. Advisor: Orizon P. Ferreira.